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MTH 698 The Stone–Čech Compactification

In this paper we will be discussing the Stone–Čech compactification.
To begin we will need to understand a few topics in topology, starting with special types

of spaces. For example we must define what a Hausdorff space is.

Definition (Hausdorff Space). LetX be a topological space. Suppose that x1 and x2 are any
two distinct points in X. We say that X is a Hausdorff space when there is a neighborhood
U1 of x1 and a neighborhood U2 of x2 such that U1 and U2 are disjoint. That is, any two
points in a Hausdorff space may be separated or “housed off” from each other.

We may consider a Hausdorff space visually as seen in Figure 1.

Figure 1: An example of a Hausdorff spaceX, with the example of two disjoint neighborhoods
surrounding the points x1 and x2

Hausdorff spaces are fairly common, in fact if (X, d) is a metric space then (X, d) is a
Hausdorff space as well. From this we can conclude that sets such as R are Hausdorff spaces.
Another important type of space is called a completely regular space.

Definition (Completely Regular). Let X be a space and let all singletons be closed in X.
We say that X is completely regular if for any point x0 ∈ X and every closed set A ⊂ X
where x0 /∈ A we have a continuous function f : X → [0, 1] such that

f(x) =

{
1 x = x0

0 x ∈ A

We will be considering the behaviors of mappings between such spaces, especially those
of a special type of mapping known as an imbedding.

Definition (Imbedding). Let X and Y be topological spaces and define a continuous one-
to-one mapping f : X → Y . Define Z ⊂ Y as the image of X under f . Then we may use
Z to define a new bijective mapping g : X → Z. If g is a homeomorphism then f is an
imbedding of X in Y .

This will not be the last time that the concept of a homeomorphism will be relevant in
our discussion, and so we will provide the following definition for the purposes of clarity and
to provide a comprehensive preliminary review.

Definition (Homeomorphism). Let X and Y be two topological spaces with the mapping
f : X → Y between them. If f is a continuous bijection and the function f−1 : Y → X is
continuous as well we call f a homeomorphism.
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There is a preliminary theorem we must also cover known as the Imbedding Theorem

Theorem 1 (Imbedding Theorem). Let X be a space with the property that all singleton
sets are closed. Let {fα}α∈J be a set of continuous functions where fα : X → R with index
set J . Furthermore, the family of functions has the property that for any x0 ∈ X with any
neighborhood U of x0 it is true that there exists some α ∈ J such that fα(x) = 0 when
x /∈ U and fα(x0) > 0. Then there is a function F : X → RJ with

F (x) = (fα(x))α∈J

is an imbedding of X in RJ . In addition, for each α, fα maps X into [0, 1], then F imbeds
X into [0, 1]J

Proof. We begin by defining F (x) : X → RJ from the product topology RJ using our set of
functions such that

F (x) = (f1(x), f2(x), · · · , fJ(x)).

We now want to show that this is an imbedding. First, we may conclude that F is continuous
as it is the product of continuous functions. Now we must show that F is one-to-one, that
is F (x) ̸= F (y) if x ̸= y. Let x ̸= y. Then there is some neighborhood Ui of x that does
not contain y and there is some indexed function fi such that fi(x) is positive and fi(y) is
zero. So F (x) ̸= F (y) and F is one-to-one. We may be sure of this from the fact that single
point sets are closed. Now we know we may define F (X) = Z to create some continuous
bijective function G : X → Z. If we are able to show that G is a homeomorphism then we
will have shown that F is an imbedding. We can conclude that this is true if it maps open
sets to open sets. That is for any open set U ⊂ X the image F (U) will be open specifically
in Z. To do this we will show that for any point z0 ∈ F (U) we may find some open set V
such that z0 ∈ V and F−1(V ) ⊂ U . Let z0 ∈ F (U) and let x0 = F−1(z0). Now suppose that
there is some indexed component fj(x0) that is positive and such that fj(X \ U) = 0. We
know this exists from our definition of the components of F (x). Now we want to be able to
choose the set of all elements of X that have a nonzero value for their jth component. We
may do this by defining the set W to be

W = π−1
j ((0,∞)),

where πj is the projection map of the jth component and π−1
j gives the preimage. Now,

W is the preimage of an open set and so it is open. Furthermore, we may conclude that
V = W ∩ Z is open in Z by the subspace topology of Z. Now, V gives us the set of all
elements of Z that have a positive jth component. We may use that fact to clearly determine
that z0 ∈ V . It is also true that V ⊂ F (U) as fj(x) > 0 only when x ∈ U by our definition of
the function fj.Then we have constructed an open set around the point z0 that is both open
and a subset of F (U). This may be done for any point in U and so we may conclude that
F (U) is open. Thus, it must be that F is a homeomorphism and therefore an imbedding
of X in RJ . Now suppose that fα instead maps X into [0, 1] for each α. We know that
[0, 1] ⊂ R and so F imbeds X into RJ but each image of the function is restricted to [0, 1]
and so the image of F will be restricted to [0, 1] as well.
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With the necessary preliminary material covered we may now consider the definition of
our key topic, compactification.

Definition (Compactification). Let X be a completely regular space. A compact Hausdorff
space Y containing X is a compactification of X if Y is the closure of X in Y . If Y0 and
Y1 are both compactifications of X where there exists some homeomorphism h : Y0 → Y1
where h(X) = X we say that Y0 and Y1 are equivalent.

For a visual example we consider the spaces X and Y shown in Figure 2. We see that Y
is a compact Hausdorff space, and that X is a subset of Y . It is also clear that X = Y and
so Y is a compactification of X.

Figure 2: Caption

As noted in our definition, it is possible to have more than one compactification of X. We
will now show that compactifications come in many different sizes by constructing several
compactifications of the open interval X = (0, 1). First, we will create our smallest possible
compactification of X. Suppose we stretch X to be (−π, π). If we bend the ends of our line
towards each other we will have all but one point of a circle. If we add this point in we have
a compact circle, specifically the unit circle S1 that is the one point compactification of X.
Figure 3 below gives a visual representation of such a compactification as well as defining
the specific imbedding h : X → Y .

Figure 3: The one point compactification of the open interval X = (0, 1) by the imbedding
h(t) = (cos(2πt))× (sin(2πt))

An obvious compactification of X comes from “gluing in” the pieces missing from some
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closure X. For example, if our compactification Y is simply the closed interval [0, 1] we need
only add in the two missing pieces 0 and 1. Once again this can be seen below in Figure 4.

Figure 4: The compactification of X = (0, 1) by completing the closed interval

Now, we will show that if X is completely regular it has a compactification, as Y must
be completely regular by the definition. Then it must also be that if we can fit X into any
completely regular space Z, we must be able to cut down Z to some Y such that Y is a
compactification of X. Formally, this gives us the following lemma.

Lemma 2. Suppose the imbedding h : X → Z takes the completely regular space X to
the compact Hausdorff space Z. Then X has a compactification Y . This compactification
may be imbedded in Z by H : Y → Z. Additionally it has the property that if y ∈ X then
H(y) = h(y). The compactification Y induced by h is unique up to equivalence.

So, for example in our one point compactification Y = S1 may be considered the com-
pactification induced by h : (0, 1) → S1.

Proof. The proof of the existence of a compactification is simple and comes from our un-
derstanding of subsets of compact sets. Let h be an imbedding for X in some compact
Hausdorff space Z. If h(X) = X0 for some X0 ⊂ Z then, by the compactness of Z there
exists some compact Y0 ⊂ Z such that X0 = Y0. Then Y0 satisfies the necessary conditions
to be a compactification of X0.

Now, we must show that such a Y0 is unique. Recall that two compactifications Y and
Y0 are equivalent if we may construct some homeomorphism h : Y → Y0 such that h(x) = x
for every x ∈ X. To do this we begin by choosing a set S where S ∩X = ∅ and where there
is some map k : S → Y0 −X0 such that k is a bijection. That is, S acts as the boundary of
X0. Using the properties of this map we may define Y = X ∪ S, with a new bijective map
H : Y → Y0 where

H(y) =

{
h(y) for y ∈ X

k(y) for y ∈ S

We then give one more property to Y to give it a topology. Suppose that U is a subset
of Y . Then U may only be open in Y if and only if H(U) is open in Y0. The mapping H is
a bijection and therefore a homeomorphism. It is also true that H(y) = h(y) for all y ∈ X
and so we can extend the range of H to get an appropriate imbedding H : Y → Z.

Now, we may use this process for any compactification Yi of X, and so may consider an
additional mapping Hi : Yi → Z. For example, with Y and Yi we have H and H1. Now,
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any such Hi is an extension of h mapping Y onto Y0. First, note that X0 ⊆ Hi(Yi) and as
Hi(Yi) is compact it must be that X̄0 ⊆ Hi(Yi) as well. The mapping Hi is continuous and
so Hi(Yi) ⊆ X̄0 meaning H(Yi) = X̄0. Now if we consider our mappings H and Hi we may
say that H −−1 ◦Hi is a homeomorphism for the sets Y and Y0 whose result is the identity
from X when restricted to X.

We will now provide a further example of a compactification. This time the compactifi-
cation induced by the mapping h : (0, 1) → [−1, 1]2 defined by h(x) = x× sin

(
1
x

)
. We see h

plotted in Figure 5 below.

Figure 5: The induced mapping of h : (0, 1) → [0, 1] × [−1, 1] given by h(x) = x × sin
(
1
x

)
plotted using Wolfram Alpha.

Unlike our compactifications given by Figure 3 and Figure 4 the compactification for
Figure 5 is Y0 = h(X) is given by attatching two distinct parts to h(X), specifically,

h(X) = {(x, sin
(
1

x

)
) ∈ R2 | 0 < x < 1} ∪ {(0, y) ∈ R2 | y ∈ [−1, 1]} ∪ {(1, sin(1))} (1)

This helps us to see that a compactification can be much larger than previously considered
as, unlike our previous compactifications, the inclusion of the line segment (−1, 1) adds an
uncountably infinite number of points to our h(X). We will find that such compactifications
are much more useful for finding continuous extensions of functions on compactifications.
That is, if we have some function f that is a continuous and real valued function on X,
how can we extend f so that it will be continuous over both X and Y ? We will begin by
assessing previous examples. First, we once again consider our one point compactification of
the interval (0, 1). We know that f : (0, 1) → R must be a bounded function as Y is compact.
It must also be true that we obtain the same limit as we get closer and closer to where our
two endpoints meet. That is, if we have a bounded continuous function f : (0, 1) → R we
find that f is may be extended to our one point compactification only when it is true that

lim
x→0+

f(x) = lim
x→1−1

f(x) = c,

for some real number c.
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When considering our two point compactification from Figure 4 the only restriction is
that for the bounded function f : (0, 1) → R the limits

lim
x→0+

f(x) and lim
x→1−1

f(x)

exist.
For our compactification in Figure 5 we are able to do even more. Obviously a function

f : (0, 1) → R2 has similar dependency on the limits shown above and for example the
function f(x) = x is extendable. However, we are able to consider the function f(x) = sin( 1

x
)

and create an appropriate extension for our compactification using a composite map. Let
h : X → R2 be h(x) = x × sin

(
1
x

)
. We know from Lemma 2 that there is a unique

compactification Y of X and an extension H of h such that H : Y → R2 and H(y) =

y × sin
(

1
y

)
when y ∈ X. If we take the image of H and define a new mapping ϕ : R2 → R

we may find the composite map

ϕ ◦ g : Y H−→ R× R ϕ−→ R.

If we let ϕ be defined as ϕ(x, y) = y then we have created a mapping that shows that the
function f(x) = sin

(
1
x

)
also has an extension for the compactification of X. The important

thing to notice here is that when we created our mapping into R2, both the component
functions used in Figure 5 are extendable over our compactification. We will soon find that
it is indeed true that if we take some set of n bounded continuous functions f1, f2, . . . , fn
as components in some mapping from X into Rn then all such functions will have have
extensions for the unique compactification Y of X. While unwieldy, we are able to extend
on this idea to use brute force to collect all functions that are bounded and continuous over a
given X to guarantee a compactification that allows for extensions of all continuous bounded
functions of X. This method is at the heart of our titular Stone–Čech compactification. In
principle, it is the largest possible compactification of a space X because you are ensuring
functions are extendable by the sheer size of your imbedding. Formally, we may define this
compactification as

Definition (Stone–Čech compactifion). Let X be a completely regular space. Let β(X) be
a compactification of X such that for any compact Hausdorff space C and any continuous
mapping f : X → C we have a continuous map g : β(X) → C that acts as a unique extension
of f . We call β(X) the Stone-Čech compactification

But first, how do we know that this type of extension is possible for all real valued
continuous and bounded functions? We have only shown a few examples and must now
prove the following Theorem.

Theorem 3. Let X be a completely regular space and let f : X → R be any bounded
continuous map from X to R. Then there is some compactification Y of X that has the
bounded continuous map g : Y → R that is an extension of f .

Proof. First, we will need to define an appropriate imbedding and show that it induces a
compactification of X. To do this, we denote the collection of all continuous functions with
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bounded images of X to be {fα}α∈M indexed by M . Now, we want to contain each fα in a
bounded interval which we will denote Iα. A simple way to do this is to set these intervals
by,

Iα = [inf fα(X), sup fα(X)]

As fα is bounded for all α ∈ M this is simply the closure of the image of fα(X). Further,
note that the product of these compact intervals,

∏
α∈M Iα creates a new compact space as

a result of the Tychonoff’s theorem. Now, we know from Lemma 2 that for any imbedding
h of a completely regular space X into a compact Hausdorff space such as

∏
α∈M Iα has a

corresponding compactification Y . To create an appropriate imbedding define the following,

h(x) = (fα(x))α∈M .

Then there is a mapping H of the compactification of X induced by h that satisfies the
results of Lemma 2, which we will define by

H : Y →
∏

Iα.

We know that this H is an imbedding from the results of Theorem 1. Now, we consider any
function f that is continuous, bounded, and real valued on X and show that this function
may be extended to Y using methods similar to that of our previous extension example. By
construction, f ∈ {fα}α∈M . Then there is some index β such that f = fβ. Then we may
create some mapping ϕβ :

∏
Iα → Iβ. We may compose this function with our imbedding

H to create the continuous map

ϕβ ◦H : Y
H−→ RM ϕβ−→ R.

This is a continuous map from Y into R and, as H |X= h,

ϕβ(H(x)) = ϕβ(h(x)) = ϕβ((fα(x))α∈M = fβ(x).

Thus, we are able to construct an appropriate extension for any real valued function that is
bounded and continuous over X.

Now that we have shown that such function extensions are possible we must also show
that they are unique. To do so, we first will prove a more general Lemma.

Lemma 4. Let A be contained in the completely regular space X and let Z be Hausdorff.
If f : A → Z is continuous then there can be at most one continuous function extension
g : A→ Z of f .

Proof. Let g and g′ both be distinct, continuous extensions of f . Then there must be some
x in the boundary of A such that g(x) ̸= g′(x). We choose the neighborhood U of g(x) and
U ′ of g′(x) such that U ∩ U ′ = ∅. Furthermore, by continuity of g and g′, we may choose a
neighborhood V of x such that g(V ∩A) and g′(V ∩A) are subsets of U and U ′ respectively.
Now it is also true that there must be some point y ∈ V such that y ∈ A as well. It is clear
that for this point, g(y) ∈ U and g′(y) ∈ U ′. It is also true that, by the definition of g and
g′, it must be that g(y) = f(y) and g′(y) = f(y). This means that f(y) ∈ U ∩ U ′, which
contradicts our earlier statement that they are disjoint. Then g and g′ cannot be distinct
function extensions.
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We may use the results of Theorem 3 and Lemma 4 to show the existence and unique-
ness of our Stone–Čech compactification. Now, we will demonstrate similar results for an
extension of any continuous function, not just those that are strictly bounded and that this
extension is possible for any compact Hausdorff space.

Theorem 5. Let the completely regular space X have compactification Y that behaves as
described in Theorem 3. Let C be a compact Hausdorff space. Then for any continuous map
f : X → C we are able to find a unique continuous extension of f in g : Y → C.

Proof. As it is a compact Hausdorff space we may imbed C into the space [0, 1]M for some
appropriate M and so for simplicity we may make the assumption that C ⊂ [0, 1]M . We
define

h(x) = (fα(x))α∈M .

and create the imbedding H of the compactification of X induced by h to be

H : Y → [0, 1]M .

Then, we determine the existence of an extension gα of fα that sends the compactification Y
to the real numbers. We may use such gα to construct a continuous mapping g : Y → [0, 1]M

where g(y) = (gα(y))α∈M . We now have a mapping that takes Y into the compact space
C ⊂ R. Now, by definition of a compactification g(Y ) = g(X) and the continuity of g
ensures that g(X) ⊂ g(X). Now, as g is an extension of f it is also true that g(X) = f(X).
The function f has image in C and so f(X) ⊂ C but C is compact by definition and so C
is simply C. Then g : Y → C and is the necessary function extension.

Finally, we must show the uniqueness of these compactifications up to equivalency.

Theorem 6. Let Y0 and Y1 be compactifications of the completely regular space X such that
Y0 and Y1 behave as described in Theorem 3. Then the two compactifications are equivalent.

Proof. Define ψ2 as the continuous function that maps X into its compactification Y2. We
showed in Theorem 5 that any continuous function that maps a completely regular space X
into a compact Hausdorff space, such as Y2 has a function extension for any compactification
of X that satisfies the conditions of Theorem 3. We know that Y1 satisfies this condition by
hypothesis and so we may create an extension of ψ2 defined as

f2 : Y1 → Y2.

The same may be said of the inclusion function ψ1 : X → Y1 and its extension f1 : Y2 →
Y1. Then we may compose our functions such that

f1 ◦ f2 : Y1 → Y2 → Y1.

So, for every x ∈ X, we have f1(f2(x)) = x. Then this mapping acts as a continuous
extension of the identity mapping iX : X → X. It must also be true by Theorem 5 that
iY1 : Y1 → Y1 is an extension of the identity map iX as well. We showed with Lemma 4 that
iX may have at most one extension and so f1 ◦ f2 = iY 1 and similar logic may be applied to
the function f2 ◦ f1 and the identity map of Y2. Then f1 and f2 are homeomorphisms and
therefore Y1 and Y2 are equivalent.
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With that, we have shown the existence of the Stone–Čech compactification and proven
its key properties.
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